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Model & Approaches

Generic SU(2) symmetric S=1 Hamiltonian on simple cubic lattice A A
— — — — ASN
H=-J Z [uSz . Sj +v (SZ . Sj)Z]
(4,4)EBA ('()S((}) sin ((,)) A. Lauchli et al.,PRL97(2006). D

Planar spin-nematic:
Fluctuations constrained to plane perpendicular to director @ € PS?.
Planar nematic characterized by minimization of fluctuations in plane.
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Earlier works report thermal melting of nematic state to be continuous with new critical
exponents. k. Harada et ol PRB65(2002). Growing interest in weakly first-order transitions recently

D B. Kaplan et al.,PRD80(2009). C. Wang et al.,PRX7(2017). V. Gorbenko et al.,SciPostPhys.5(2018). H. Ma and Y. He,PRB99(2019)

Stochastic series expansion

(QMC)

%

Dirichlet distributions

Loops & Poisson- Accurate quantitative
description
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Stochastic series expansion

High temperature expansion of quantum partition function

A. W. Sandvik et al.,PRB43(1991)

Z=Te(e )= Y Z 57_1 (o] (—H)" |a)

ae{|a)} n=0

How to evaluate matrix elements (a| (—H)" |a)?

® Decompose H into sum of bond-operators H = — > Hj such that
b

Hyla) ocfo’) , with  |a),|o) € {|o)}

® (—H)" yields product of bond operators Hy, Hy, - - - Hy,

n

® Introduce operator sequence S, = {by,..., by}
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Stochastic series expansion

Using bond decomposition and operator string gives

Z=3 % S il IT Hy o
{o} n=0 {Sa} = p=1 .
=> =W(X)
{x}

Visualization:
© ©® O @
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— There exist very efficient global updates
O. Syljuasen and A. Sandvik,PRE66(2002)., F. Alet et al.,PRE71(2005).
— Method scales linearly in system size (but also

linearly in /3)
% Suffers from sign problem for frustrated models

L L T <

Unbiased and quantitative approach to study large-
scale quantum systems!

—
@@Ozi@

sites with bonds
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B. Téth,LMP28(1993)., D. Ueltschi,J. Math. Phys.54(2013)

I_OOp representation & PD distributions M. Aizenman & B Nachtergae\e,Comrr"l.-Math..Phys.i64(1994)

Loop models involve one dimensional objects "living” in d-dimensional space

oy !
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Joint distribution of lenghts of long loops displays universal behavior: Always given by PD
distribution characterized by real number 6, denoted as PD(6). (For u =0,1: 6 = 3, and for
€(0,1):0=3/2)

PD conjecture: C. Goldschmidt et al.,Contemp. Math.552(2011). D. Ueltschi,PRE91(2015).

As L — oo, we can replace expectation in loop model by expectation with respect to PD(#),
scaled by number 1 € [0, 1] (fraction of long loops at imaginary time 0)
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Nature of the phase transition

Phase transition was previously reported to be continuous. For large systems there is however
genuine first-order behavior identifiable:

Specific heat peaks scale as Ciyax o |A|
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J. Lee and J. M. Kosterlitz, PRL65(1990).

Coexistence in energy histograms
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[ In contrast to earlier claims we identify thermal melting to be (weakly) first-order! ]
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Order parameter distribution

Spin nematic order detectable using Q = > (57)* — %.From PD calculations we obtain:

PQ
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0.0

=1
| ----PD prediction
— L =148
‘ T=05
—0.6 —0.3 0.0 0.3

Distribution
- if —3n<s<gn,
pq(s) = q 2VIVan—s
0 otherwise.
Moments
| 0 (@%)3 (@%)3 (@5
€(0,1) ‘ 3/2 447,772 2735773 %774
UE{ 3] 3 ﬁWQ 1%5773 F15774
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What happens at 7.7

0 otherwise.
Moments
| 0 (@%)3 (QS) (@5
€(0,1) ‘ 3/2 44?772 27135773 %T
UE{ 3] 3 18" 357 13571
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Order parameter distribution

Spin nematic order detectable using Q = > (57)* — %.From PD calculations we obtain:

Distribution
if —3n<s<gn,
po(s) = § 2VIan—s
0 otherwise.
Moments
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0.0 T T T
—0.6 —-0.3 0.0 0.3

What happens at 7.7— Additonal contribution from disordered states observable for L = 100!
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Moment ratios
(@
(@Q2)°

u = cot(37/8)

Moment ratios such as Binder cumulant Ug =1 — % do not depend on 1 anymore!
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PD predictions: r

— Binder cumulant within spin-nematic phase: U, = 2/7
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PD predictions: r

do not depend on 1 anymore!

— Binder cumulant within spin-nematic phase: U, = 2/7

— Moment ratios towards SU(3) end points: lim,,_,q+ %

= lim, ;- {

(Q%)5(w) 8

Q@su=1) — 5

7/9



Moment ratios
(@
(@Q2)°

u = cot(37/8)

Moment ratios such as Binder cumulant Ug =1 — % do not depend on 1 anymore!

Can we also predict Binder
cumulant at 7.7
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PD predictions:

— Binder cumulant within spin-nematic phase: U, = 2/7

— Moment ratios towards SU(3) end points: lim,, o+ % = lim, ;- % =8
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Critical Binder cumulant

Coexistence of ordered and disordered states (weight of ordered states «):

(g =a lim ()g+ (1 —a) lim ()g
BB B—Bs

For discrete symmetries in the g-state Potts model one obtains: o = ¢/(¢ + 1). What is « for

continuous symmetries? J. xu, s-H. Tsai, D. P. Landau, and K. Binder, PRE99(2019).

=== -- Uy u = cot(37/8)
— For continuous case, replace ¢ by integral 0-01 T
measure of space of extremal states ~0.5 1 :
h I == 2 h e 2
(here ¢ ) S -10 X 00l
—~1.5 4 0.06
. . 2 5 T=05
— Thisyields U5 = £ — = —PD jum
14 04 4 jump
@ 7 T —2.0 L =48-F-L =80 004 2 ILIZSO :
LZ%E L1 00 05 10
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Conclusion

® Used a combination of QMC and PD calculations based on a loop model formulation

® Uncovered weakly first-order thermal melting transitions of planar spin-nematic states in
quantum S=1 systems with SU(2) symmetry

® Demonstrated how generic properties of both low-temperature nematic phase and phase
coexistence line can be calculated based on PD conjecture

Open questions:

® Further explain weakness of these first-order transitions using methods such as RG

® Base heuristics for coexistence of phases with continuous symmetries on more rigorous
considerations

Thank you for your attention!
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