Poisson-Dirichlet distributions and weakly first-order spin-nematic phase transitions

Nils Caci¹, Peter Mühlbacher², Daniel Ueltschi², Stefan Wessel¹

 $^1{\rm Institute}$ for Theoretical Solid State Physics, RWTH Aachen University, Germany $^2{\rm Department}$ of Mathematics, University of Warwick, United Kingdom

16.08.2022

Model & Approaches

Generic SU(2) symmetric S=1 Hamiltonian on simple cubic lattice Λ

$$H = -J \sum_{\langle i,j \rangle \in \mathcal{B}_{\Lambda}} \left[u \vec{S}_{i} \cdot \vec{S}_{j} + v \left(\vec{S}_{i} \cdot \vec{S}_{j} \right)^{2} \right]$$

$$\downarrow^{\text{COS}(\phi)} \downarrow^{\text{Sin}(\phi)}$$

A. Läuchli et al., PRL97 (2006). D. Ueltschi, PRE91 (2015).

Planar spin-nematic:

Fluctuations constrained to plane perpendicular to director $\vec{a} \in P\mathbb{S}^2$. Planar nematic characterized by *minimization* of fluctuations in plane.

Earlier works report thermal melting of nematic state to be continuous with new critical exponents. K. Harada et al., PRB65(2002). Growing interest in weakly first-order transitions recently

D B. Kaplan et al., PRD80(2009). C. Wang et al., PRX7(2017). V. Gorbenko et al., SciPostPhys.5(2018). H. Ma and Y. He, PRB99(2019).

Stochastic series expansion (QMC)

Loops & Poisson-Dirichlet distributions

Accurate quantitative description

Model & Approaches

Generic SU(2) symmetric S=1 Hamiltonian on simple cubic lattice Λ

$$H = -J \sum_{\langle i,j \rangle \in \mathcal{B}_{\Lambda}} \left[u \vec{S}_{i} \cdot \vec{S}_{j} + v \left(\vec{S}_{i} \cdot \vec{S}_{j} \right)^{2} \right]$$

$$= 1$$

A. Läuchli et al., PRL97 (2006). D. Ueltschi, PRE91 (2015).

Planar spin-nematic:

Fluctuations constrained to plane perpendicular to director $\vec{a} \in P\mathbb{S}^2$. Planar nematic characterized by *minimization* of fluctuations in plane.

Earlier works report thermal melting of nematic state to be continuous with new critical exponents. K. Harada et al., PRB65(2002). Growing interest in weakly first-order transitions recently

D B. Kaplan et al., PRD80(2009). C. Wang et al., PRX7(2017). V. Gorbenko et al., SciPostPhys.5(2018). H. Ma and Y. He, PRB99(2019).

Stochastic series expansion (QMC)

+ Loops & Poisson-Dirichlet distributions

Accurate quantitative description

Stochastic series expansion

High temperature expansion of quantum partition function

$$Z = \operatorname{Tr}(e^{-\beta H}) = \sum_{\alpha \in \{|\alpha\rangle\}} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle$$

How to evaluate matrix elements $\langle \alpha | (-H)^n | \alpha \rangle$?

 \bullet Decompose H into sum of bond-operators $H=-\sum\limits_b H_b$ such that

$$H_b \left| \alpha \right\rangle \propto \left| \alpha' \right\rangle$$
 , with $\left| \alpha \right\rangle, \left| \alpha' \right\rangle \in \left\{ \left| \alpha \right\rangle \right\}$

- ullet $(-H)^n$ yields product of bond operators $H_{b_1}H_{b_2}\cdots H_{b_n}$
- Introduce operator sequence $S_n = \big\{b_1, \dots, b_n\big\}$

Stochastic series expansion

Using bond decomposition and operator string gives

$$Z = \sum_{\{|\alpha\rangle\}} \sum_{n=0}^{\infty} \sum_{\{S_n\}} \frac{\beta^n}{n!} \langle \alpha | \prod_{p=1}^n H_{b_p} | \alpha \rangle$$

$$:= \sum_{\{X\}} := W(X)$$

Visualization:

- → There exist very efficient global updates
 - O. Syljuåsen and A. Sandvik,PRE66(2002)., F. Alet et al.,PRE71(2005).
- \rightarrow Method scales linearly in system size (but also linearly in β)
- Suffers from sign problem for frustrated models

Unbiased and quantitative approach to study large-scale quantum systems!

Loop representation & PD distributions

Loop models involve one dimensional objects "living" in d-dimensional space

$$Z = e^{2\beta |\mathcal{B}_{\Lambda}|} \sum_{k,\ell=0}^{\infty} \frac{(1-u)^{k} u^{\ell}}{k! \, \ell!}$$
$$\times \sum_{\substack{b_{1},\dots,b_{k} \\ c_{1},\dots,c_{\ell}}} \int_{0}^{\beta} ds_{1} \dots ds_{k} dt_{1} \dots dt_{\ell} \, 3^{|\mathcal{L}(\omega)|}.$$

Joint distribution of lenghts of long loops displays universal behavior: Always given by PD distribution characterized by real number θ , denoted as PD(θ). (For $u=0,1:\theta=3$, and for $u\in(0,1):\theta=3/2$)

PD conjecture:

C. Goldschmidt et al., Contemp. Math. 552 (2011). D. Ueltschi, PRE 91 (2015).

As $L \to \infty$, we can replace expectation in loop model by expectation with respect to PD(θ), scaled by number $\eta \in [0,1]$ (fraction of long loops at imaginary time 0)

Nature of the phase transition

Phase transition was previously reported to be continuous. For large systems there is however genuine first-order behavior identifiable:

J. Lee and J. M. Kosterlitz, PRL65(1990).

In contrast to earlier claims we identify thermal melting to be (weakly) first-order!

Order parameter distribution

Spin nematic order detectable using $Q=\sum\limits_{i=1}^{N}(S_{i}^{z})^{2}-\frac{2}{3}.$ From PD calculations we obtain:

Distribution

Moments

	θ	$\langle Q^2 \rangle_{\beta}$	$\langle Q^3 \rangle_{\beta}$	$\langle Q^4 \rangle_{\beta}$
$u \in (0,1)$ $u \in \{0,1\}$	3/2 3	$\frac{\frac{4}{45}\eta^2}{\frac{1}{18}\eta^2}$	$\begin{array}{l} -\frac{16}{27,35}\eta^3 \\ -\frac{1}{135}\eta^3 \end{array}$	$\frac{\frac{16}{27;35}\eta^4}{\frac{1}{135}\eta^4}$

Order parameter distribution

Spin nematic order detectable using $Q=\sum\limits_{i=1}^{N}(S_{i}^{z})^{2}-\frac{2}{3}.$ From PD calculations we obtain:

Distribution

$$\boxed{ \rho_Q(s) = \begin{cases} \frac{1}{2\sqrt{\eta}\sqrt{\frac{1}{3}\eta - s}} & \text{if } -\frac{2}{3}\eta \leq s \leq \frac{1}{3}\eta, \\ 0 & \text{otherwise.} \end{cases} }$$

Moments

	θ	$\langle Q^2 \rangle_{\beta}$	$\langle Q^3 \rangle_{\beta}$	$\langle Q^4 \rangle_{\beta}$
$u \in (0,1)$ $u \in \{0,1\}$	3/2	$\frac{\frac{4}{45}\eta^2}{\frac{1}{18}\eta^2}$	$\begin{array}{l} -\frac{16}{27;35}\eta^3 \\ -\frac{1}{135}\eta^3 \end{array}$	$\frac{\frac{16}{27:35}\eta^4}{\frac{1}{135}\eta^4}$

What happens at T_c ?

Order parameter distribution

Spin nematic order detectable using $Q=\sum\limits_{i=1}^N(S_i^z)^2-\frac{2}{3}.$ From PD calculations we obtain:

Distribution

$$\rho_Q(s) = \begin{cases} \frac{1}{2\sqrt{\eta}\sqrt{\frac{1}{3}\eta - s}} & \text{if } -\frac{2}{3}\eta \leq s \leq \frac{1}{3}\eta, \\ 0 & \text{otherwise}. \end{cases}$$

Moments

	θ	$\langle Q^2 \rangle_{\beta}$	$\langle Q^3 \rangle_{\beta}$	$\langle Q^4 \rangle_{\beta}$
$u \in (0,1)$ $u \in \{0,1\}$	3/2	$\frac{\frac{4}{45}\eta^2}{\frac{1}{1}n^2}$	$-\frac{16}{2735}\eta^3$	$\frac{\frac{16}{27}35}{1}\eta^4$
 $a \in \{0,1\}$		1877	- ₁₃₅ '/	$\frac{1}{135}\eta^4$

What happens at T_c ? \to Additional contribution from disordered states observable for $L\gtrsim 100!$

Moment ratios

Moment ratios such as Binder cumulant $U_Q=1-\frac{1}{3}\frac{\langle Q^4\rangle}{\langle Q^2\rangle^2}$ do not depend on η anymore!

PD predictions:

 \rightarrow Binder cumulant within spin-nematic phase: $U_{Q}^{-}=2/7$

Moment ratios

Moment ratios such as Binder cumulant $U_Q=1-\frac{1}{3}\frac{\langle Q^4\rangle}{\langle Q^2\rangle^2}$ do not depend on η anymore!

PD predictions:

- ightarrow Binder cumulant within spin-nematic phase: $U_{Q}^{-}=2/7$
- ightarrow Moment ratios towards SU(3) end points: $\lim_{u \to 0^+} \frac{\langle Q^2 \rangle_{eta}(u)}{\langle Q^2 \rangle_{eta}(u=0)} = \lim_{u \to 1^-} \frac{\langle Q^2 \rangle_{eta}(u)}{\langle Q^2 \rangle_{eta}(u=1)} = \frac{8}{5}$

Moment ratios

Moment ratios such as Binder cumulant $U_Q=1-\frac{1}{3}\frac{\langle Q^4\rangle}{\langle Q^2\rangle^2}$ do not depend on η anymore!

Can we also predict Binder cumulant at T_c ?

PD predictions:

- ightarrow Binder cumulant within spin-nematic phase: $U_{Q}^{-}=2/7$
- ightarrow Moment ratios towards SU(3) end points: $\lim_{u \to 0^+} \frac{\langle Q^2 \rangle_{eta}(u)}{\langle Q^2 \rangle_{eta}(u=0)} = \lim_{u \to 1^-} \frac{\langle Q^2 \rangle_{eta}(u)}{\langle Q^2 \rangle_{eta}(u=1)} = \frac{8}{5}$

Critical Binder cumulant

Coexistence of ordered and disordered states (weight of ordered states α):

$$\langle \cdot \rangle_{\beta_c} = \alpha \lim_{\beta \to \beta_c^+} \langle \cdot \rangle_{\beta} + (1 - \alpha) \lim_{\beta \to \beta_c^-} \langle \cdot \rangle_{\beta}$$

For discrete symmetries in the q-state Potts model one obtains: $\alpha = q/(q+1)$. What is α for continuous symmetries? J. Xu, S.-H. Tsai, D. P. Landau, and K. Binder, PRE99(2019).

- ightarrow For continuous case, replace q by integral measure of space of extremal states (here $q=2\pi$)
- ightarrow This yields $U_Q^c=rac{2}{7}-rac{5}{14\pi}$

Conclusion

- Used a combination of QMC and PD calculations based on a loop model formulation
- Uncovered weakly first-order thermal melting transitions of planar spin-nematic states in quantum S=1 systems with SU(2) symmetry
- Demonstrated how generic properties of both low-temperature nematic phase and phase coexistence line can be calculated based on PD conjecture

Open questions:

- Further explain weakness of these first-order transitions using methods such as RG
- Base heuristics for coexistence of phases with continuous symmetries on more rigorous considerations

Thank you for your attention!